Pre-clagg Warm-up!!!

Which of the following statements is logically
equivalent to the statement that the square matrix
A is invertible?

a. The equation Ax =0 is consistent
Ax=0 1L alun cgisterc( |

l/)\. The reduced echelon form of A is the identity

Y
c. The echelon form of A has a leading entry in
every column

d. None of the above

e. More than one of the above.
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3.6 Determinants

We learn: La(ata% O(W[M

e the definition in terms of cofactor expansions

e row and column properties, the effect under
elementary operations

e computation using Gaussian elimination

New vocabulary:
e minors, cofactors, adjoint matrix, transpose
matrix, upper triangular matrix

Some theorems:

e the formula for the inverse matrix using
the adjoint matrix

e the determinant of the product is the
product of the determinants

e Cramer’s rule




Cofactors expansions of the determinant
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Row and column properties of the determinant

e cofactor expansions along any row or along
any column are equal

The effect of elementary row operations on det:

e adding a multiple of a row to another row
leaves the determinant unchanged

e switching two rows multiplies the
determinant by -1

e multiplying a row by a number t multiplies
the determinant by t.

Page 201 question 10:
Evaluate the determinant after simplifying by
adding a multiple of some row or column to
another.
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e cofactor expansions along any row or along

any column are equal
The effect of row operations:
adding a multiple of a row to another row
leaves the determinant unchanged
switching two rows multiplies the
determinant by -1
multiplying a row by a number t multiplies
the determinant by t.

Consequences

If a matrix has a zero row or column then
det = 0 e Lapla@ expoasion .
If a matrix has two rows the same or two
columns the same then det =0

The det of a triangular matrix is the
product of the diagonal elements.
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Like questions 13-16:
Use the method of elimination to evaluate the

determinant.
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Practical way to compute the determinant of
a 3 x3 matrix.
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Pre-clags Warm-up!!!

Question.
What are the determinants of the three
elementary matrices
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More properties of the determinant

Defining properties:

det A is the unique function on square

matrices for which

e jtis linear on each row

e If we switch two rows, det A is
multiplied by -1

e det (identity matrix) = 1

It has the same defining properties on
columns

e If A, B are n x n matrices then
det AB = det A det B
e The transpose matrix: det AAT = det A
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This relates to writing invertible matrices as
products of elementary matrices.



More properties of the determinant

Question 34 203
Find AN-1} when A= [-5-4 2
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uestion: Solv
Cramer’s rule Q Solve

| C 1T 2(|x 1
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